0

Mars Invaders

Handian Chen Haixu Wang Faran Ahmed Qureshi Muhammad Mohsin Siraj Juan Camilo Pérez Muñoz

CONTENTS

- Line Tracking
 - Assumptions
 - Light sensor and encoder calibration
 - Implementation
- Mars mission
 - Assumptions
 - Temperature and camera sensors
 - Implementation
- Conclusions

• Problem definition:

Locate and follow a line in the floor meanwhile measuring the actual length of the line.

- Considerations:
 - The color of the background and the line are unknown and could change with the lighting.
 - The width of the line is unknown.
 - The light sensor may not have uniform readings.
 - Encoders need to be calibrated to relate the number of counts with the distance.

- Assumptions:
 - We can change the place of the light sensor depending on the line width.
 - To measure the light values of the background and the line, we can put the robot in front of the line and move towards the line.
 - The rotations of the robot are short, so the length of the line is equal to the distance the robot moves.

- Sensors calibrations
 - Light sensors:
 - Left sensor is the reference sensor.
 - Middle sensor has an additive correction factor of +4.
 - Right sensor has an additive correction factor +2.
 - Direction encoder:
 - It is used to determine whether or not the wheels are rotated the maximum acceptable value.
 - The direction can move to a maximum of 85 counts from the aligned position.

- Sensors calibrations
 - Translation encoder:

• Hardware architecture

• Algorithm:

 Threshold to determine whether the sensors are on top of the line or not is calibrated at the beginning of the process.

Results

 Accuracy of the length measure: 7 mm error for a line of 915 mm and 12 mm error for a line of 3000 mm.

Problem definition:

Write software for the Mars-rover such that it finds the three lakes, measures the temperature of the water and sends the outcome to the earth computer.

- Considerations:
 - Coordinates of the lakes are received from Earth Computer.
 - The coordinates of the lakes are relative to the position of the robot.
 - Communication with Earth Computer may have delays or even may fail.
 - <u>Crater and edge detection using the light sensors</u> is needed in order to avoid falling.
 - If the Robot is close to one lake, it may be possible that the camera does not detect the lake.

- Assumptions:
 - Lighting conditions are not uniform in all the mars stage.
 - Light sensors can be calibrated to detect the edge and the crater in any lightning condition.

- Requirements:
 - Edge detection should be the task with highest priority.
 - If more than one lake is detected at the same time, robot should move to the closest one.
 - If there is not any lake coordinates (Beginning condition) search around until a lake is found.
 - If there are old lake coordinates, keep them until new coordinates are received.

Camera calibration:

- Projection model (Pinhole) from the image to the mars plane.
- The (x,y) coordinates are relative to the robot position.

$$\begin{bmatrix} wx \\ wy \\ w \end{bmatrix} = H \begin{bmatrix} j \\ i \\ 1 \end{bmatrix}$$

• Hardware architecture

Software structure: Brick I: Read 3 light sensors, read lakes coordinates and send updated data to brick 2. Brick 2: 4 threads: IR reading, Motion control, Temperature measure & sending, falling avoidance. At most 2 threads are working in parallel.

- Falling avoidance:
 - Depends on the lightning, then static thresholds are not suitable.
 - Adaptive thresholds used, they are updated when we are sure we are on the mars platform.

- Rotation radius:
 - To adjust the direction of the rover towards the lake, we need to know how long is the rotation radius.
 - After several calibrations, the estimated radius is 405 mm.

• RESULTS

CONCLUSIONS

- We improve our team work skills.
- We gained experience on software design and developing.
- We managed to solve the hardware and the technical difficulties.
- We managed to integrate all the different sensors data and actuators, to obtain the desired performance.

THANKS!

